3.24 \(\int x^2 (a x+b x^2)^{5/2} \, dx\)

Optimal. Leaf size=163 \[ -\frac {45 a^8 \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a x+b x^2}}\right )}{16384 b^{11/2}}+\frac {45 a^6 (a+2 b x) \sqrt {a x+b x^2}}{16384 b^5}-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b} \]

[Out]

-15/2048*a^4*(2*b*x+a)*(b*x^2+a*x)^(3/2)/b^4+3/128*a^2*(2*b*x+a)*(b*x^2+a*x)^(5/2)/b^3-9/112*a*(b*x^2+a*x)^(7/
2)/b^2+1/8*x*(b*x^2+a*x)^(7/2)/b-45/16384*a^8*arctanh(x*b^(1/2)/(b*x^2+a*x)^(1/2))/b^(11/2)+45/16384*a^6*(2*b*
x+a)*(b*x^2+a*x)^(1/2)/b^5

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {670, 640, 612, 620, 206} \[ \frac {45 a^6 (a+2 b x) \sqrt {a x+b x^2}}{16384 b^5}-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {45 a^8 \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a x+b x^2}}\right )}{16384 b^{11/2}}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b} \]

Antiderivative was successfully verified.

[In]

Int[x^2*(a*x + b*x^2)^(5/2),x]

[Out]

(45*a^6*(a + 2*b*x)*Sqrt[a*x + b*x^2])/(16384*b^5) - (15*a^4*(a + 2*b*x)*(a*x + b*x^2)^(3/2))/(2048*b^4) + (3*
a^2*(a + 2*b*x)*(a*x + b*x^2)^(5/2))/(128*b^3) - (9*a*(a*x + b*x^2)^(7/2))/(112*b^2) + (x*(a*x + b*x^2)^(7/2))
/(8*b) - (45*a^8*ArcTanh[(Sqrt[b]*x)/Sqrt[a*x + b*x^2]])/(16384*b^(11/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[((m + p)*(2*c*d - b*e))/(c*(m + 2*p + 1)), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int x^2 \left (a x+b x^2\right )^{5/2} \, dx &=\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}-\frac {(9 a) \int x \left (a x+b x^2\right )^{5/2} \, dx}{16 b}\\ &=-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}+\frac {\left (9 a^2\right ) \int \left (a x+b x^2\right )^{5/2} \, dx}{32 b^2}\\ &=\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}-\frac {\left (15 a^4\right ) \int \left (a x+b x^2\right )^{3/2} \, dx}{256 b^3}\\ &=-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}+\frac {\left (45 a^6\right ) \int \sqrt {a x+b x^2} \, dx}{4096 b^4}\\ &=\frac {45 a^6 (a+2 b x) \sqrt {a x+b x^2}}{16384 b^5}-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}-\frac {\left (45 a^8\right ) \int \frac {1}{\sqrt {a x+b x^2}} \, dx}{32768 b^5}\\ &=\frac {45 a^6 (a+2 b x) \sqrt {a x+b x^2}}{16384 b^5}-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}-\frac {\left (45 a^8\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a x+b x^2}}\right )}{16384 b^5}\\ &=\frac {45 a^6 (a+2 b x) \sqrt {a x+b x^2}}{16384 b^5}-\frac {15 a^4 (a+2 b x) \left (a x+b x^2\right )^{3/2}}{2048 b^4}+\frac {3 a^2 (a+2 b x) \left (a x+b x^2\right )^{5/2}}{128 b^3}-\frac {9 a \left (a x+b x^2\right )^{7/2}}{112 b^2}+\frac {x \left (a x+b x^2\right )^{7/2}}{8 b}-\frac {45 a^8 \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a x+b x^2}}\right )}{16384 b^{11/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 142, normalized size = 0.87 \[ \frac {\sqrt {x (a+b x)} \left (\sqrt {b} \left (315 a^7-210 a^6 b x+168 a^5 b^2 x^2-144 a^4 b^3 x^3+128 a^3 b^4 x^4+20736 a^2 b^5 x^5+33792 a b^6 x^6+14336 b^7 x^7\right )-\frac {315 a^{15/2} \sinh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{\sqrt {x} \sqrt {\frac {b x}{a}+1}}\right )}{114688 b^{11/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2*(a*x + b*x^2)^(5/2),x]

[Out]

(Sqrt[x*(a + b*x)]*(Sqrt[b]*(315*a^7 - 210*a^6*b*x + 168*a^5*b^2*x^2 - 144*a^4*b^3*x^3 + 128*a^3*b^4*x^4 + 207
36*a^2*b^5*x^5 + 33792*a*b^6*x^6 + 14336*b^7*x^7) - (315*a^(15/2)*ArcSinh[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/(Sqrt[x]
*Sqrt[1 + (b*x)/a])))/(114688*b^(11/2))

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 257, normalized size = 1.58 \[ \left [\frac {315 \, a^{8} \sqrt {b} \log \left (2 \, b x + a - 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right ) + 2 \, {\left (14336 \, b^{8} x^{7} + 33792 \, a b^{7} x^{6} + 20736 \, a^{2} b^{6} x^{5} + 128 \, a^{3} b^{5} x^{4} - 144 \, a^{4} b^{4} x^{3} + 168 \, a^{5} b^{3} x^{2} - 210 \, a^{6} b^{2} x + 315 \, a^{7} b\right )} \sqrt {b x^{2} + a x}}{229376 \, b^{6}}, \frac {315 \, a^{8} \sqrt {-b} \arctan \left (\frac {\sqrt {b x^{2} + a x} \sqrt {-b}}{b x}\right ) + {\left (14336 \, b^{8} x^{7} + 33792 \, a b^{7} x^{6} + 20736 \, a^{2} b^{6} x^{5} + 128 \, a^{3} b^{5} x^{4} - 144 \, a^{4} b^{4} x^{3} + 168 \, a^{5} b^{3} x^{2} - 210 \, a^{6} b^{2} x + 315 \, a^{7} b\right )} \sqrt {b x^{2} + a x}}{114688 \, b^{6}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^2+a*x)^(5/2),x, algorithm="fricas")

[Out]

[1/229376*(315*a^8*sqrt(b)*log(2*b*x + a - 2*sqrt(b*x^2 + a*x)*sqrt(b)) + 2*(14336*b^8*x^7 + 33792*a*b^7*x^6 +
 20736*a^2*b^6*x^5 + 128*a^3*b^5*x^4 - 144*a^4*b^4*x^3 + 168*a^5*b^3*x^2 - 210*a^6*b^2*x + 315*a^7*b)*sqrt(b*x
^2 + a*x))/b^6, 1/114688*(315*a^8*sqrt(-b)*arctan(sqrt(b*x^2 + a*x)*sqrt(-b)/(b*x)) + (14336*b^8*x^7 + 33792*a
*b^7*x^6 + 20736*a^2*b^6*x^5 + 128*a^3*b^5*x^4 - 144*a^4*b^4*x^3 + 168*a^5*b^3*x^2 - 210*a^6*b^2*x + 315*a^7*b
)*sqrt(b*x^2 + a*x))/b^6]

________________________________________________________________________________________

giac [A]  time = 0.24, size = 131, normalized size = 0.80 \[ \frac {45 \, a^{8} \log \left ({\left | -2 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a x}\right )} \sqrt {b} - a \right |}\right )}{32768 \, b^{\frac {11}{2}}} + \frac {1}{114688} \, \sqrt {b x^{2} + a x} {\left (\frac {315 \, a^{7}}{b^{5}} - 2 \, {\left (\frac {105 \, a^{6}}{b^{4}} - 4 \, {\left (\frac {21 \, a^{5}}{b^{3}} - 2 \, {\left (\frac {9 \, a^{4}}{b^{2}} - 8 \, {\left (\frac {a^{3}}{b} + 2 \, {\left (81 \, a^{2} + 4 \, {\left (14 \, b^{2} x + 33 \, a b\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^2+a*x)^(5/2),x, algorithm="giac")

[Out]

45/32768*a^8*log(abs(-2*(sqrt(b)*x - sqrt(b*x^2 + a*x))*sqrt(b) - a))/b^(11/2) + 1/114688*sqrt(b*x^2 + a*x)*(3
15*a^7/b^5 - 2*(105*a^6/b^4 - 4*(21*a^5/b^3 - 2*(9*a^4/b^2 - 8*(a^3/b + 2*(81*a^2 + 4*(14*b^2*x + 33*a*b)*x)*x
)*x)*x)*x)*x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 185, normalized size = 1.13 \[ -\frac {45 a^{8} \ln \left (\frac {b x +\frac {a}{2}}{\sqrt {b}}+\sqrt {b \,x^{2}+a x}\right )}{32768 b^{\frac {11}{2}}}+\frac {45 \sqrt {b \,x^{2}+a x}\, a^{6} x}{8192 b^{4}}+\frac {45 \sqrt {b \,x^{2}+a x}\, a^{7}}{16384 b^{5}}-\frac {15 \left (b \,x^{2}+a x \right )^{\frac {3}{2}} a^{4} x}{1024 b^{3}}-\frac {15 \left (b \,x^{2}+a x \right )^{\frac {3}{2}} a^{5}}{2048 b^{4}}+\frac {3 \left (b \,x^{2}+a x \right )^{\frac {5}{2}} a^{2} x}{64 b^{2}}+\frac {3 \left (b \,x^{2}+a x \right )^{\frac {5}{2}} a^{3}}{128 b^{3}}+\frac {\left (b \,x^{2}+a x \right )^{\frac {7}{2}} x}{8 b}-\frac {9 \left (b \,x^{2}+a x \right )^{\frac {7}{2}} a}{112 b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(b*x^2+a*x)^(5/2),x)

[Out]

1/8*x*(b*x^2+a*x)^(7/2)/b-9/112*a*(b*x^2+a*x)^(7/2)/b^2+3/64*a^2/b^2*(b*x^2+a*x)^(5/2)*x+3/128*a^3/b^3*(b*x^2+
a*x)^(5/2)-15/1024*a^4/b^3*(b*x^2+a*x)^(3/2)*x-15/2048*a^5/b^4*(b*x^2+a*x)^(3/2)+45/8192*a^6/b^4*(b*x^2+a*x)^(
1/2)*x+45/16384*a^7/b^5*(b*x^2+a*x)^(1/2)-45/32768*a^8/b^(11/2)*ln((1/2*a+b*x)/b^(1/2)+(b*x^2+a*x)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 1.45, size = 183, normalized size = 1.12 \[ \frac {45 \, \sqrt {b x^{2} + a x} a^{6} x}{8192 \, b^{4}} - \frac {15 \, {\left (b x^{2} + a x\right )}^{\frac {3}{2}} a^{4} x}{1024 \, b^{3}} + \frac {3 \, {\left (b x^{2} + a x\right )}^{\frac {5}{2}} a^{2} x}{64 \, b^{2}} + \frac {{\left (b x^{2} + a x\right )}^{\frac {7}{2}} x}{8 \, b} - \frac {45 \, a^{8} \log \left (2 \, b x + a + 2 \, \sqrt {b x^{2} + a x} \sqrt {b}\right )}{32768 \, b^{\frac {11}{2}}} + \frac {45 \, \sqrt {b x^{2} + a x} a^{7}}{16384 \, b^{5}} - \frac {15 \, {\left (b x^{2} + a x\right )}^{\frac {3}{2}} a^{5}}{2048 \, b^{4}} + \frac {3 \, {\left (b x^{2} + a x\right )}^{\frac {5}{2}} a^{3}}{128 \, b^{3}} - \frac {9 \, {\left (b x^{2} + a x\right )}^{\frac {7}{2}} a}{112 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(b*x^2+a*x)^(5/2),x, algorithm="maxima")

[Out]

45/8192*sqrt(b*x^2 + a*x)*a^6*x/b^4 - 15/1024*(b*x^2 + a*x)^(3/2)*a^4*x/b^3 + 3/64*(b*x^2 + a*x)^(5/2)*a^2*x/b
^2 + 1/8*(b*x^2 + a*x)^(7/2)*x/b - 45/32768*a^8*log(2*b*x + a + 2*sqrt(b*x^2 + a*x)*sqrt(b))/b^(11/2) + 45/163
84*sqrt(b*x^2 + a*x)*a^7/b^5 - 15/2048*(b*x^2 + a*x)^(3/2)*a^5/b^4 + 3/128*(b*x^2 + a*x)^(5/2)*a^3/b^3 - 9/112
*(b*x^2 + a*x)^(7/2)*a/b^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x^2\,{\left (b\,x^2+a\,x\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a*x + b*x^2)^(5/2),x)

[Out]

int(x^2*(a*x + b*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x^{2} \left (x \left (a + b x\right )\right )^{\frac {5}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(b*x**2+a*x)**(5/2),x)

[Out]

Integral(x**2*(x*(a + b*x))**(5/2), x)

________________________________________________________________________________________